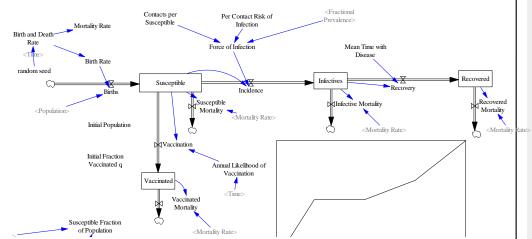
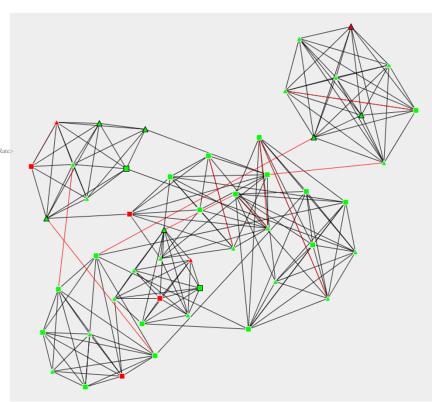
Agent-Based and Aggregate Modeling: Tradeoffs & Limitations

Nathaniel Osgood

April 4, 2011


Distinctions


- Inherent, e.g.
 - Qualitative vs. Quantitative
 - Static vs. Dynamic
 - Stochastic vs. Deterministic
 - Capacity to understand single scenario vs. range of scenarios
 - Magnitude of computational resources required
 - Interactive or not
 - Under vs. over-determined calibration
 - Ability to calibrate to/make behaviour depend on individual history
- Important software skills mediation
 - Required level of software development sophistication

Dynamic Models for Health

- Classic: Aggregate Models
 - Differential equations
 - Population classified into 2 or more state variables according to attributes
 - |State Variables|, |Parameters| << |Population|</p>
- Recent: Individual-Based Models
 - Governing equations approach varies
 - Each individual evolves
 - |State Variables|, |Parameters | \propto |Population|

Contrasting Model Granularity

Granularity Selection: Problem Specific

- Selection of granularity is a function of question that are asking – not of the *"true nature of the system"*
- Quanta of most obvious system components may not align with needs for insight
 - May gain benefits from higher-level representation
 - Many high-level behavior of complex systems can be explained with very simple models
 - Often gain greater insight from simpler model: Cf Gas laws vs. lattice gas model
 - May wish to seek lower level model
 - Small infection spread model : Characterization at level of immune response rather than monolithic person

Myth of Individual-Based Models as "Modeling from the Bottom Up"

- A single person is a natural locus of description
 - Presents for care
 - Lives
 - Dies
 - Coupled internal systems
- But the world has no natural "bottom"
 - It is frequently desirable to include within a person a great deal of "within the skin" detail
- The issues of model depth & breath are just as pressing in individual-based models as in aggregate modeling

Contrasting Benefits

Aggregate Models

- Frequently, easier
 - Construction
 - Calibration
 - Parameterization
 - Formal analysis (Control theoretic & Eigenspace techniques)
 - Understanding
- Performance
 - Lower baseline cost
 - Population size invariance
- Less pronounced stochastics
 - Less frequent need for Monte Carlo ensembles
- Quicker construction, runtime ⇒More time for understanding, refinement

Individual-Based Models

- Better fidelity to many dynamics
- Stronger support for highly targeted policy planning
- Ability to calibrate to & validate off of longitudinal data
- Greater heterogeneity flexibility
- Better for examining finergrained consequences
 - e.g. transfer effects w/i pop.
 - Network spread
- Simpler description of some causal mechanisms

Key Needs Motivating Individual-Based Modeling

- Need to calibrate against information on agent history
- Need to capture progression of agents along multiple pathways (e.g. co-morbidities)
- Wish to characterize **learning by and/or memory** of agents based on experience, or **strong history dependence** in agents
- Need to capture distinct **localized perception** among agents
- Seeking to intervene at points in, change behavior on, explain phenomena over or explain dynamics across networks
- Seek distinct interventions for many heterogenous categories
- Need to **capture impact** of intervention across **many categories**
- When it is much simpler to **describe behavior at indiv. level**
- Seek **flexibility** in exploring different **heterogeneity dimensions**
- Needs of stakeholders to engage with individual-based models
- Want to describe behaviour at **multiple scales**

Key Needs Motivating Aggregate-Based Modeling

- Need to execute quickly (e.g. for user interaction)
- Understand/describe system behaviour across all possible values for parameters
 - Seeking to mathematically analyze the model (e.g. to determine location or stability of equilibria)
 - To determine shape of all possible trajectories
- Want to **use mathematical tools**, such as control theory to identify high-leverage parameters, optimal policies
- Need to extensively calibrate to much historic data
- Desire of stakeholders to work at higher level
- Behavior for different subgroups **differs only in degree**
- No recourse to **software engineering knowledge**
- Lack of detailed knowledge of network structure/ individual-level behaviour/Individual-level data